If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+16t+370=0
a = -16; b = 16; c = +370;
Δ = b2-4ac
Δ = 162-4·(-16)·370
Δ = 23936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23936}=\sqrt{64*374}=\sqrt{64}*\sqrt{374}=8\sqrt{374}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{374}}{2*-16}=\frac{-16-8\sqrt{374}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{374}}{2*-16}=\frac{-16+8\sqrt{374}}{-32} $
| -4x+101=73 | | 9(2-3x)-29=8×-(x-23 | | (4-p)3+p=16 | | -5.2X+59.9=15.9+1.8x | | 61+5x-15=x | | 8x+35=75 | | 8x+35=105 | | x^2+(2x)^2=125 | | 20+7k=6 | | 8x+35+8x+35=180 | | 0=-3.5t^2+210t | | 10x+25+8x+35=180 | | 2/3n+7/2=14 | | 12x^2+50x+50=0 | | 3/2n+2/7=14 | | X=-2+4x5 | | (7/12x+4)-(10/12x-11)+(9/12x-9)= | | 8x+35=180 | | 16y+7=119 | | 3/2n+7/2=14 | | -30=60x | | 3x^2-84x+588=0 | | 2(x-9)=5x+18 | | 0,5x+3,5=-x-1 | | -6x+10+10x-8=22 | | (7/12x+4)-(5/6x-11)+(3/4x-9)= | | 9y+15=114 | | 8-(m+6)=6 | | 32=x/12 | | 5125x−1=(18)−4−x. | | d=400=2.5 | | x^+18x+81=0 |